SiLaure's Data

[Seaborn] 01. Seaborn이란 본문

Records of/Learning

[Seaborn] 01. Seaborn이란

data_soin 2021. 7. 26. 09:46

- Seborn Library

: 데이터를 정제, 분석 후 matplotlib을 기본으로 다양한 시각화 기법을 제공하는 라이브러리.

 

- 특징

  • Python에 내장된 Matplot Library보다 Powerful 하다.
  • 예쁘다.
  • 정보를 쉽게 이해할 수 있도록 시각화 처리를 할 수 있다.
  • pandas DataFrame과 매우 호환이 잘 된다.

 

 

- 기본 세팅

e.g. sns.xxxplot(data=df) 

 

- 공식 홈페이지에서 볼 만한 페이지

http://seaborn.pydata.org/introduction.html

 

An introduction to seaborn — seaborn 0.11.1 documentation

Seaborn is a library for making statistical graphics in Python. It builds on top of matplotlib and integrates closely with pandas data structures. Seaborn helps you explore and understand your data. Its plotting functions operate on dataframes and arrays c

seaborn.pydata.org

http://seaborn.pydata.org/examples/index.html

 

Example gallery — seaborn 0.11.1 documentation

 

seaborn.pydata.org

 

 

 

- Boxplot

http://seaborn.pydata.org/examples/grouped_boxplot.html

 

Grouped boxplots — seaborn 0.11.1 documentation

Grouped boxplots seaborn components used: set_theme(), load_dataset(), boxplot(), despine() import seaborn as sns sns.set_theme(style="ticks", palette="pastel") # Load the example tips dataset tips = sns.load_dataset("tips") # Draw a nested boxplot to show

seaborn.pydata.org

 

 

- Heatmap

http://seaborn.pydata.org/examples/many_pairwise_correlations.html

 

Plotting a diagonal correlation matrix — seaborn 0.11.1 documentation

Plotting a diagonal correlation matrix seaborn components used: set_theme(), diverging_palette(), heatmap() from string import ascii_letters import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="w

seaborn.pydata.org

 

 

 

- Pairplot

http://seaborn.pydata.org/examples/scatterplot_matrix.html

 

Scatterplot Matrix — seaborn 0.11.1 documentation

Scatterplot Matrix seaborn components used: set_theme(), load_dataset(), pairplot() import seaborn as sns sns.set_theme(style="ticks") df = sns.load_dataset("penguins") sns.pairplot(df, hue="species")

seaborn.pydata.org

 

 

 

Comments